OKLAHOMA STATE UNIVERSITY
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

ECEN/MAE 5713 Linear Systems Spring 2012 Midterm Exam \#2

DO ALL FOUR PROBLEMS

Name: \qquad

E-Mail Address: \qquad

Problem 1:

Find a minimal observable canonical form realization (i.e., its simulation diagram and state space representation) for the following MISO system described by

$$
H(s)=\left[\begin{array}{ll}
\frac{2 s+3}{s^{3}+4 s^{2}+5 s+2} & \frac{s^{2}+2 s+2}{s^{4}+3 s^{3}+3 s^{2}+s}
\end{array}\right]
$$

Problem 2:

A vector space, V, is spanned by v_{1}, v_{2}, v_{3} given as

$$
v_{1}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-5 \\
1 \\
1 \\
5
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-1 \\
2 \\
2 \\
1
\end{array}\right]
$$

Determine the orthogonal complement space of V, V^{\perp}, and find a basis and dimension of V^{\perp}. For $x=\left[\begin{array}{llll}0 & 3 & 3 & 0\end{array}\right]^{T}$, find its direct sum representation of $x=x_{1} \oplus x_{2}$, such that $x_{1} \in V, x_{2} \in V^{\perp}$.

Problem 3:

Consider the linear operator

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
2 & 4 & -2 & 0 \\
1 & 2 & -1 & 0
\end{array}\right],
$$

determine its rank and nullity, then find a basis for the range space and the null space of the linear operator, A, respectively?

Problem 4:

Show if the following two sets

$$
\left[\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right] \text { and }\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right],\left[\begin{array}{cc}
2 & -2 \\
2 & 2
\end{array}\right]
$$

span the same subspace V of $\left(\Re^{2 \times 2}, \mathfrak{R}\right)$. If so, to form a basis for the set with all 2×2 matrices with real coefficients.

